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Abstract 

Because the shape of the pore has a great influence on the longitudinal wave velocity of the rock, and 

the pore types of the carbonate rock are diverse, including primary pores, dissolved pores, caves, cracks, 

etc. Therefore, the wave impedance of carbonate reservoirs is controlled by both porosity and fracture 

porosity. Generally, the pore content of cracks is difficult to predict, so the porosity cannot be calculated 

under the condition that the wave impedance is known and the pore content of the crack is unknown. We 

introduce a data-driven approach, using support vector machine technology, taking the seismic properties 

of the wave impedance and the degree of crack development at the well point as input data, using the 

porosity as the prediction target, training the machine learning model, and then applying the model to the 

whole. In the study area, the porosity distribution of the study area is coming out. This method has 

achieved good results in the prediction of porosity of carbonate reservoirs in an oil field in Tarim Basin. 
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1. Introduction 

A key step in calculating oil and gas reserves is to obtain accurate reservoir porosity. Usually, the step 

of calculating the porosity is to first use the 3D seismic data and the drilling data to perform the wave 

impedance inversion to obtain the wave impedance information of the reservoir. Then, based on the 

drilling data, the conversion relationship between the wave impedance and the porosity is established, and 

the wave impedance is converted into the porosity.  

 

For conventional clastic reservoirs, the rock longitudinal wave velocity and porosity generally have a 

good negative correlation, so the conversion relationship between wave impedance and porosity can be 

established by the fitting formula method. However, for carbonate reservoirs, the fitting formula method 

will cause large errors.  

Figure 1 is a plot of wave impedance and porosity of the Ordovician carbonate reservoir in an oilfield 

in the Tarim Basin, of which the data is from logging. It can be seen that the higher the porosity, the 

smaller the wave impedance, but the data points are scattered, and it is impossible to establish a suitable 

wave impedance-porosity fitting relationship with less error. This is due to the diverse pore types of 

carbonate reservoirs, including primary pores, dissolution pores, caves, and fractures. The combination of 

various pore types is complex, which makes the carbonate reservoirs have strong heterogeneity (Fig. 2).  
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Fig. 1. Wave impedance-porosity intersection diagram of carbonate reservoir 

 

 

Fig. 2. Carbonate pores are diverse in shape 

 

 

Fig. 3. Effect of different shape pores on velocity-porosity (Xu & Payne, 2009) 
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Previous studies have shown that pores of different geometries have a greater influence on the 

longitudinal wave velocity of rock [1-3]. Xu & Payne simulates pores of various shapes with ellipsoids of 

different flattening ratios (the ratio of the short axis to the long axis of the ellipsoid) [4]. The results show 

that when the flattening rate is small, that is, the pore shape is close to the coin shape, the longitudinal 

wave velocity decreases more rapidly as the porosity becomes larger (Fig. 3). The crack can be regarded 

as a small flattening pore, so in the pore space, the amount of crack has a great influence on the reservoir 

wave impedance-porosity relationship. This is why the data points in Fig. 1 are relatively scattered and it 

is difficult to establish a fitting relationship. We must know the content of the cracked pores to determine 

how the wave impedance changes with porosity. 

For a three-dimensional research area, all of our reservoir information is derived from 3D seismic data 

and drilling data. If there is a wide azimuth prestack seismic data, we can predict the crack content by the 

azimuthal anisotropy method. However, such methods require high seismic data acquisition density and 

signal-to-noise ratio, which is usually limited by data acquisition costs. Very few oil fields have such 

high-quality data. Most oilfield pre-stack seismic data is of poor quality and cannot meet crack prediction. 

Claim. Therefore, in the case where the crack content cannot be accurately predicted, we must find other 

methods to achieve the purpose of porosity prediction. 

The degree of fracture development is related to the degree of fracture of the rock, and the degree of 

fracture is related to the degree of fracture and stratum curvature. Therefore, the fault development or the 

degree of stratigraphic bending is large, and the more the rock is broken, the denser the crack. So cracks 

usually develop near faults and folds. We can describe the degree of crack development by using seismic 

attributes that can indicate the degree of fault and stratigraphic bending, such as curvature, dip, and so on. 

These seismic attributes can be calculated directly from the post-stack seismic data. They are related to 

the degree of crack development, but still can not quantitatively reflect the crack content. So we use a 

machine learning method, namely support vector machine technology. It trains a machine together with 

the wave impedance and crack attribute data related to porosity. Learn the model to predict porosity. 

 

2. Support Vector Machine 

Support Vector Machine (SVM) is a machine learning algorithm proposed in the early 1990s [5]. The 

principle is to map the linearly inseparable samples in the sample space to the feature space through the 

kernel function, and make the original linear indivisible samples linearly separable in the feature space, 

thus achieving the purpose of classification. The equation 𝑓(𝑥) that defines the optimal classification 

hyperplane is 

𝑓(𝑥) = 𝐖𝑇𝜑(𝑥) + 𝐛                              （1） 

Where 𝐖 is the matrix of weight coefficients; 𝜑 is the normalization function; 𝑥 is the sample data; 

𝐛 is the coefficient matrix. 

Support Vector Regression (SVR) does not divide the sample into two categories, but minimizes the 

total distance from the sample to the plane on both sides of the optimal classification plane to achieve the 

fit. The definition error tolerance range is ε, the i-th relaxation factor is 𝜉𝑖, the penalty coefficient is C, 

and n is the number of samples, so the problem is transformed into the minimum value of the objective 

function, and the objective function is 

C‖𝑊‖2 2⁄ + 𝐶 ∑ 𝜉𝑖
𝑛
𝑖=1                               （2） 

In this study, based on the principle of support vector regression machine, porosity prediction is 

performed by the complex nonlinear relationship between logging porosity and wave impedance and 
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seismic properties of cracks. 

Optimization of parameters is critical to improving the performance of the model. According to 

previous research experience [6, 7], the support vector machine kernel function is chosen as a Gaussian 

kernel function. Therefore, the fitting accuracy of the support vector machine regression model mainly 

depends on the selection of three parameters such as the insensitive loss coefficient ε, the penalty 

coefficient C and the width coefficient σ. In this study, the particle swarm optimization algorithm was 

used to optimize the parameters. Particle Swarm Optimization (PSO) is a group intelligent optimization 

algorithm proposed by Kenned and Ebermart in 1995 based on the social behavior of flocks and fish 

stocks [8]. The position of each particle of the particle swarm represents a potential optimal solution of 

the problem. Each particle has two characteristics of position and velocity. The objective function value 

corresponding to the particle position coordinate is used as the fitness value of the particle. The algorithm 

uses the fitness to Measure the pros and cons of particle position. The algorithm first randomly initializes 

a group of particles and then finds the optimal solution by iteration. In each iteration, the particle updates 

its position by tracking two extremums, one is the most position found by the particle itself, i.e., the 

individual extremum p; the other is the optimal solution currently found by the entire particle swarm, i.e., 

the global extreme value g. After the particle finds the above two extreme values, it updates its position 

and speed, and repeats the above process until the algorithm converges.  

 

3. Application Case Analysis 

The research area is located in an oilfield in the Tarim Basin. The target layer is the Ordovician 

carbonate karst fracture-cavity reservoir. The wave impedance and porosity data at the well point have 

been obtained from the well. The wave impedance data volume in the 3D work area has also been 

obtained from seismic inversion (Fig. 4, Fig. 5), and it is desirable to calculate the porosity distribution of 

the reservoir for the reserve calculation. Based on the previous analysis, we first need to calculate the 

seismic properties that describe the degree of fracture development. The attributes we choose include: 

maximum curvature, formation dip, seismic coherence, symmetry. 

Formation dip [9]: From the perspective of geometric seismology, any reflection point on the 3D 

seismic region can be regarded as a time scalar field. The gradient of the scalar field reflects the 

fluctuation rate of the reflection surface, that is, the variation of the reflection surface in different 

directions. The formation dip attribute represents the first derivative of the seismic reflection surface in 

the direction of the fastest change. Through the calculation of the maximum dip property, it is possible to 

find and detect the characteristics associated with the tectonic deformation and predict the tiny crack 

development trend zone (Fig. 6). 

Maximum curvature [10, 11]: A point on a surface has a curvature value in any direction, where the 

curvature defined by the plane orthogonal to the surface is called the normal curvature. In the infinite 

normal curvature, the largest absolute value is called the maximum curvature. The relative motion of the 

formation block is easily seen on the time slice of the maximum curvature data. The curvature property 

quantifies the angle of the curve offset line, which helps to dilute the local dip effect, emphasizing linear 

features associated with sedimentary features or small-scale faults. Combining these quantitative 

descriptions of the degree of structural bending with existing prior knowledge of the structure can be 

combined with geological models to predict natural fractures in the reservoir (Figure 7). 
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Fig. 4. 3D seismic section of the study area 

 

 

Fig.5. Study area wave impedance profile 
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Fig.6. Formation dip profile of the study area 

 

 

Fig. 7. Maximum curvature profile of the study area 
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Fig. 8. Coherent analysis profile of the study area 

 

 

Fig. 9. Study area symmetry analysis profile 
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Coherent analysis [12]: The purpose of calculating the seismic coherent data volume is mainly to seek 

and share the seismic data to highlight those irrelevant data. Estimates of the three-dimensional seismic 

correlation can be obtained by calculating the local waveform similarity in the longitudinal and lateral 

directions. In the small range of faults, stratigraphic lithology mutations, and special geological bodies, 

the waveform characteristics between the seismic traces change, which leads to a local correlation 

between the track and the channel (Fig. 8). 

Symmetry analysis [13]: According to the research on the sequence of reflection coefficients obtained 

from sonic logging and density logging, the series of seismic reflection coefficients conform to the 

generalized Gaussian distribution. According to the linear system theory, when the input signal is a 

stationary random process, the output is still a stationary random process. In particular, if the input is a 

stationary Gaussian process, the output is still a Gaussian process. That is, the linear transformation does 

not affect the random process. Distribution characteristics. The convolution model of the reflected seismic 

trace is a typical sliding average linear system model. If the seismic reflection coefficient sequence is 

regarded as a generalized Gaussian input signal, the output (seismic channel) should be the same 

distributed stationary signal, where the seismic wavelet It is considered to be the transfer function of the 

system. In the case where the formation is evenly layered, the actual seismic signal is a zero-mean 

near-symmetric generalized Gaussian distribution. However, when the nature of the local medium is 

abrupt, such as the pore-dissolved area of faults, rivers, and carbonate rocks, the seismic record will no 

longer satisfy the symmetric generalized Gaussian distribution, and the symmetry analysis can detect this 

asymmetric and non-Gaussian Changes can identify the mutated region of the nature of the subsurface 

medium (Figure 9). 

Fig. 10 is a flow chart of a support vector machine predicting porosity. Firstly, the measured porosity 

of the well is used as the prediction target, and the machine learning model is trained by taking the 

properties of the wave impedance at the well point and the inclination of the formation as input variables. 

Then, the attribute data body of the 3D work area is input into the machine learning model, and finally the 

porosity prediction result is output. 

 

 
Fig. 10. Support vector machine predicting reservoir porosity flow chart 
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Fig. 11 shows the measured porosity curve (red) and the predicted porosity curve (blue) for seven 

wells in the study area. It can be seen that the prediction results are in good agreement with the measured 

data. Fig. 12 is a cross-sectional view of the prediction results of porosity. From the perspective of the 

distribution of porosity, it is similar to the wave impedance, indicating that the porosity is most affected 

by the wave impedance. However, due to the participation of cracks, the porosity distribution is not 

completely consistent with the wave impedance. 

 

 

Fig. 11. Support Vector Machine Predicted Porosity (Blue) vs. Measured Porosity (Red) 

 

 

Fig. 12. Study of Porosity Profile 
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4. Conclusion 

The porosity and fracture pore content of carbonate reservoirs jointly control the wave impedance. 

Therefore, it is necessary to know the wave impedance and the pore content of the crack at the same time 

to predict the porosity. However, the fracture pore content is usually difficult to obtain, and it is difficult 

to predict the porosity by a conventional algorithm. 

Training the prediction model with the wave impedance to porosity and crack attribute using the 

support vector machine technology is a data-driven prediction method. Our application shows that this 

method has achieved some good results in predicting porosity and is also an effective attempt of AI 

technology in this field of oil and gas exploration. 
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