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Abstract 

As a nonlinear optimization problem with constraint conditions, the design of an IIR filter is a 
challenging problem in data/image processing field. In this paper, we use a cooperative quantum particle 
swarm optimization with dynamic varying search area and Lévy flights (CQPSO-DVSA-LF) algorithm to 
help design the two-dimensional recursive IIR filters with two ways to reduce the search space. The 
former is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of 
particles’ activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights 
are used to generate the stochastic disturbance in the movement of particles. From the numerical results of 
the experiments, we can see that the ripple in the blockage parts of CQPSO-DVSA-LF is smaller than 
those in other PSO-like algorithms. Moreover, the algorithm is also available and effective in the design of 
the 2-D elliptic IIR filter with the McClellan transformation method in our study. 

 
Keywords: recursive IIR filter, nonlinear optimization, quantum particle swarm optimization, Lévy 
flights. 

 
1. Introduction 

Recursive and non-recursive filters are widely used in the research and industry domains: seismic data 
processing, image processing, pattern recognition, remote sensing, etc.[1] A non-recursive FIR filter is one 
whose impulse response is of finite duration, and output is calculated solely from the current and previous 
input values. A FIR filter is always stable from its definition, own linear phase characteristic on a wide 
frequency range, and generally easier to implement. On the other hand, an IIR filter could provide flat 
frequency response with lower order, and be applied to very narrow transition band frequency. Hence, IIR 
filters are much more efficient and accurate than FIR filters [2]. 

Because it is difficult to obtain linear phase response and to control the overall frequency response 
with IIR filters, the design of an IIR filter is a challenging problem. In the digital 2-D filter design field, 
there exist principally two different approaches: transformation approach and optimization method. The 
former needs more pre-knowledge and shows poor performance in most cases, while the later method 
gains a huge success as it’s more simple and efficient [3,4].  

Shubhendu Kumar Sarangi et al. presents design of 1-D and 2-D recursive filters using crossover 
bacterial foraging (COBFO) and Cuckoo Search (CS) techniques, and gain a high quality in [1]; In paper 
[2], S.K. Saha et al. presents a global heuristic search optimization technique, which is a hybridized 
version of the Gravitational Search Algorithm (GSA) and Wavelet Mutation (WM) strategy. An extensive 
simulation study of low-pass (LP), high-pass (HP), band-pass (BP) and band-stop (BS) IIR filters 
unleashes the potential of GSAWM in achieving better cut-off frequency sharpness, smaller pass band and 
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stop band ripples, smaller transition width and higher stop band attenuation with assured stability; Yu 
Wang, Bin Li, and Thomas Weise, proposed a Two-stage ensemble memetic algorithm for function 
optimization and digital IIR filter design in their research paper [3]; Jinn-Tsong Tsai et al. emphasizes 
solving a design problem of two-dimensional (2-D) infinite-impulse-response (IIR) digital 
structure-specified filters by using an improved genetic algorithm, which is called the hybrid 
Taguchi-genetic algorithm (HTGA), and then uses the designed filters to the image processing in [4]; 
Mauricio F. Quélhas presents a new technique for designing IIR filters that have minimum deviation from 
equiripple response, and the examples are shown to illustrate the efficacy of the proposed design technique, 
compared to alternative design techniques in [5]; Swagatam Das investigates a novel approach to the 
designing of two-dimensional zero phase infinite impulse response (IIR) digital filters using the PSO 
algorithm in his original paper [6]; Adem Kalinli presents a new method for adaptive IIR filter design 
based on tabu search algorithm in [7]. 

The contribution of this paper is to propose a new version of PSO algorithm with the global search 
techniques such as dynamic varying search area and Lévy flights to optimize the design of 2-D IIR filters. 
The benchmark test experiment show its efficiency and rapid convergence speed than other similar 
algorithms. Then, the design results show the method yields a better approximation to the transfer function 
of the IIR filters compared to other method in the state of the art. Furthermore, the method could also 
support the design of the 2-D elliptic IIR filter with the McClellan transformation method in our study. 

The organization of this paper is as follows: Section 1 deals with the introduction part. Formulation of 
optimized design of 2-D IIR digital filter is presented in Section 2. The proposed CQPSO-DVSA-LF with 
Dynamic Varying Search Area and Lévy flights is elaborated in Section 3 and 4. Design results are 
illustrated in Section 5. Concluding remarks are found in the last section. 

 
2. Formulation of optimized design of 2-D IIR digital filter 

A system is recursive when the present output always depends on the past/present input and past output 
of the system. For a 2-D IIR filter with the input-output relationship governed by a form of differential 
equation as below 

,ሺ݊ଵݕ ݊ଶሻ ൌൣܾݕሺ݊ଵ െ ݅, ݊ଶ െ ݆ሻ  ܽݔሺ݊ଵ െ ݅, ݊ଶ െ ݆ሻ൧

ேమ

ୀ

ேభ

ୀ

, (1)

where ݔሺ݊ଵ, ݊ଶሻ and ݕሺ݊ଵ, ݊ଶሻ are the filter’s input and output, respectively; ܾ ൌ 0, and ଵܰ, ଶܰ 
denote the order on the horizontal and vertical directions respectively. To simplify the problem but without 
loss of generality, we let ଵܰ ൌ ଶܰ ൌ ܰ.  

After the z-transformation on the two sides of the equation, the following Eq. 1 could be obtained. 

ܻሺ݊ଵ, ݊ଶሻ ൌൣܾܻሺ݊ଵ െ ݅, ݊ଶ െ ݆ሻ  ܽܺሺ݊ଵ െ ݅, ݊ଶ െ ݆ሻ൧

ே

ୀ

ே

ୀ

, (2)

Hence, the transfer function could be written in the following general form: 

,ଵݖሺܪ ଶሻݖ ൌ
∑ ∑ ܽݖଵ

ିݖଶ
ିே

ୀ
ே
ୀ

1 െ ∑ ∑ ܽݖଵ
ିݖଶ

ିே
ୀ

ே
ୀ

(3)

Take the 2-D IIR digital filter referred in papers [x-x] into account, the desired amplitude response 
characteristic could be formulized as following  
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where ܯௗ is the desirable amplitude response of 2-D filter of the frequencies  ߱ଵ,߱ଶ ranged into ሾ0,  .ሿߨ
Then, the design task is to find a transfer function Hሺzଵ, zଶሻ such that it approcimates the desired 

amplitude response to the greatest extent. Such an approximation of the desired response can be achieved 
by minimizing 

ܬ ൌ ,൫ܽܬ ,ݍ ,ݎ ,ݏ ൯ܪ ൌሾ|ܯሺ߱ଵ, ߱ଶሻ| െ ௗሺ߱ଵ,߱ଶሻሿܯ
ே

ୀ

ே

ୀ

,	 (5)

where ܯሺ߱ଵ,߱ଶሻ is the Fourier transform of ܪሺݖଵ,   ଶሻ, that isݖ

ሺ߱ଵ,߱ଶሻܯ ൌ ,ሺ߱ଵܪ ߱ଶሻ|௭మୀషೕഘమ
௭భୀషೕഘభ , (6)

and ߱ଵ ൌ ሺߨ/ ଵܰሻ݊ଵ, ߱ଶ ൌ ሺߨ/ ଶܰሻ݊ଶ and  is an even positive integer always equals 2. 
Hence, the purpose of design is to minimize the difference between the actual and desired amplitude 

response of the filter at ሺ ଵܰ, ଶܰሻ points which is illustrated by the following equation. 
Minimize ܬ ൌ ,൫ܽܬ ,ݍ ,ݎ ,ݏ  ൯ܪ

ൌൣหܯ൫ሺߨ/ ଵܰሻ݊ଵ, ሺߨ/ ଶܰሻ݊ଶ൯ห െ /ߨௗ൫ሺܯ ଵܰሻ݊ଵ, ሺߨ/ ଶܰሻ݊ଶ൯൧


ே

ୀ

ே

ୀ

,	
(7)

For the purpose of discussions, we choose the low order IIR filter as our object, of which stability is 
easy to judge. Then its transfer function could be written as the below form: 

	
(8)

Because of the only first-degree factors into the denominator, the stability conditions are given by 
|ሺݍ  |ሻݎ ൏ 1  ݏ (9)
|ሺݍ െ |ሻݎ ൏ 1 െ  (10)ݏ

ሺ1  ሻݎ  0  (11)
ሺ1 െ ሻݎ  0  (12)

which subjects to the constraints 
|ሺݎ  |ሻݏ ൏ ݍ  1, n ൌ 1,2, … ,ܰ (13)

where  
ோܣ ൌ ܽ  ܽଵ ݂ଵ  ܽଶ ݂ଶ  ܽଵ ଵ݂  ܽଶ ଶ݂  ܽଵଵ ଵ݂ଵ  ܽଵଶ ଵ݂ଶ  ܽଶଵ ଶ݂ଵ  ܽଶଶ ଶ݂ଶ (14)

ூܣ ൌ ܽ  ܽଵ݃ଵ  ܽଶ݃ଶ  ܽଵ ଵ݃  ܽଶ݃ଶ  ܽଵଵ ଵ݃ଵ  ܽଵଶ ଵ݃ଶ  ܽଶଵ݃ଶଵ  ܽଶଶ݃ଶଶ (15)
ଵோܤ ൌ 1  ଵݍ ଵ݂  ଵݎ ݂ଵ  ଵݏ ଵ݂ଵ  (16)
ଵூܤ ൌ ଵݍ ଵ݃  ଵ݃ଵݎ  ଵݏ ଵ݃ଵ  (17)

ଶோܤ ൌ 1  ଶݍ ଵ݂  ଶݎ ݂ଵ  ଶݏ ଵ݂ଵ  (18)
ଶூܤ ൌ ଶݍ ଵ݃  ଶ݃ଵݎ  ଶݏ ଵ݃ଵ  (19)

݂ ൌ ሺ݅߱ଵݏܿ  ݅߱ଶሻ, ݃ ൌ ሺ݅߱ଵ݊݅ݏ  ݅߱ଶሻ, ݅, ݆ ൌ 0,1,2  (20)
Therefore, the module amplitude response could be calculated as  
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3. CQPSO with Dynamic Varying Search Area (DVSA) and Lévy flights 

3.1 Rationale of Dynamic Varying Search Area (DVSA) 

As we known, complexity of optimization problem is not only relies heavily on the 
objective/constraint function, but also related with its search area. Simply speaking, subjected to the same 
objective/constraint function, the larger search area is, the harder it can find the solution [8]. Based on this 
idea, to change the search area dynamically, or say it reduces, is necessary to accelerate the processing of 
algorithm. On the other hand, when the search area reduced, the populations of sub-swarms are 
unnecessary as big as previous. 

Given an optimization function: 

݉݅݊	݂ሺݔሻ, ݔ ൌ ൫ݔଵ, ,ଶݔ … , ே൯ݔ
்
	∈ ܵ ⊆ ܴே                        (22) 

where ܵ ൌ ሾܽଵ, ܾଵሿ ൈ ሾܽଶ, ܾଶሿ ൈ …ൈ ൣܽே, ܾே൧, the basic rationale of Dynamic Varying Search Area 
(DVSA) could be illustrated as the following description: Firstly, assume that ܰ cooperative sub-swarms 
probe in the search space. When the minimal distances between optimal individuals of each sub-swarm 
reached a threshold, according to the maximum likelihood estimation, the hypothesis that the real optimal 
solution is in the area arounded by these particles was established. Then reduce the previous search area ܵ 
to ܵ′, generate a new swarm with same sub-swarms on ܵ′, and decrease the popula-tions meanwhile. 
Finally, repeat the above procedures untill satisfy the end condition. Considering the vector x before the 
r-th reduce, where the i-th component ݔ  ranges over ሾܽିଵ, ܾିଵሿ. Then x could be expressed as 
ିଵݔ ∈ ሾܽ

ିଵ, ܾ
ିଵሿ. Fig.x examplifies the case that four cooperative sub-swarms reduce their search area. 

First, they probe the solution in ܵ and get the best particles ݔଵ∗, ,∗ଶݔ ,∗ଷݔ  ସ∗ which included in ܵ′. So theݔ
search area becomes ܵ′. The next time of reduce to ܵ′′ is the same procedure. 
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Figure 1. Rationale of DVSA. 

  

3.2 Condition of DVSA 

In this part, we will give the condition when the DVSA occures. Surpose there exist ܰ sub-swarms, 
the best particles set found is writen 

1,1 1,1 1,2{ , , ..., }pr Nr r r
b b b bx x x x

   , 1, 1, 1, 1,
1 2( , , ..., ), 1, 2, ...,

d

r p r p r p r p
b b b bN px x x x p N           (23) 

Now, let us consider the distance among them. 
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where 
2  is the 2-norm on corresponding search area.  

When ܦିଵ  reached a small threshold, according to the maximum likelihood estimation, the 
hypothesis that the real optimal solution is in the area arounded by these particles was established. So the 
latter search can be performed around these particles. 

In light of this, we can give the condition of DVSA as shown in Formula (26). 

1 1 1
2

, 0,1 /r r r
pD a b N                                   (26) 

In other words, if the above equation is satisfied, then change the search area of the next generation of 
sub-swarms untill the DVSA occures again. ߣ can be a fix number, but more often, it is a paramater can 
be changed adaptively according to the results of evolution. 

Let consider the search area after reduce. Note that after the r-th reduce, ix  ranges over ሾܽ, ܾሿ. 
Then the upper/Lower bounds are defined by the following equation: 

 
1, 1 1

1, 1 1
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min{ } ( )
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i bi i i

r r p r r
i bi i i

a x b a

b x b a






  

  

   


   





                      (27) 

To guarantee the new search area not larger than the previous area, the above equation should be 
modified as follows: 

1 1,
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r r r
i i ir

i r
i

a a a
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i i ir

i r
i

b b b
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                       (28) 

 
3.3 Policy of population scale adjustment 

The computational complexity also relies heavily on the scale of the population of the 
swarm/sub-swarm. In general, the more time about particle evaluation, the more computation takes place. 
Hence, under the permission of optimization performance, it is necessary to cut down the population of 
sub-swarms. 

In this article, we will follow a traditional method called search granularity. Take the particle after the 
r-th reduce for instance, whose i-th component ݔ ranges over ሾܽ, ܾሿ. The distance of this interval can 
be written as Eq.(29) which reflect the refined effort of search。If the distance among the solutions is small, 
we can say that search granularity is small, and vice versa. From the real experience, the bigger swarm, the 
less distance among the particles, and aslo lessen the search granularity. 

r r r
i i id b a                                  (29) 

Furthermore, if it is asked that the search granularity on [ , ]r r
i ia b  should be 1 / ikN , the population 

scale of sub-swarm can be determined abey the below equation. 

1

dN
r r
i ik i

k

N dN


 
  
 
                                (30) 
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where     is the floor function. When the search area descreses, the population of the related sub-swarm 

also becomes small. 
 

3.4 Theoretical analysis 

In this subsection, an analysis of the convergence of CQPSO with DVSA is provided. We discuss it 
from two perspectives, i.e., search area and population of swarms. 

Firstly, we analyze the varying of interval measure caused by two neighboring reduces. According to 
the policy of DVSA, it can be described as follows according Eq. (31, 32): 

1 1r r r r
i i i ib a b a                                     (31) 

Without loss of generality, let  

 1 1 0,1( ),r r r r r r
i i i i i ib a k b a k                             (32) 

then 
1 1 1 2 2

1 2

1

,  

min{ , , ..., }

( ) ( ) ... ( )r r r r r r r r r r r
i i i i i i i i i i i i i

r
r r
i i i i

j

b a k b a k k b a K b a K

k k k k

    



    



     


         (33) 

From the Eq. 33, we can see that when search area varies, the reduced area becomes the r
ik times of 

oringin area. So when serveral genenrations of this procedure happens, the final area could be heavily 
reduced with the considerable promotion of efficiency. 

Secondly, in consideration of swarm populations, we can get the result from Eq. 34. 

1 1 1 1
( ) ( ) ( )

d d d dN N N N
r r r r r r r
j ji i ji i i ji i i i ji i i

i j j j

N N d N b a N K b a N b a
   

     
      

          
       
       (34) 

The above inference shows that as the search area decreases, the related populations of swarms also be cut 
down with a certain rate. 

 
4. Lévy flights 

The technique of random disturbance is often imported to improve the performance of PSO or QPSO. 
When QPSO was proposed, the Gaussian and Cauchy probability distribution disturbance have been used 
to avoid premature convergence. In [9], the random sequences in QPSO were generated using the absolute 
value of the Gaussian probability distribution with zero mean and unit variance. Based on the 
characteristic of QPSO, the variables of the global best and mean best positions are mutated with Cauchy 
distribution, and an adaptive QPSO version was proposed in [10]. 

In this paper, another random method, Lévy flights, is employed to do this work. Lévy flights, named 
after the French mathematician Paul Pierre Lévy, are Markov processes. After a large number of steps, the 
distance from the origin of the random walk tends to a stable distribution. Lévy flights, which can be 
characterized by an inverse square distribution of step length, may optimize the random search process 
when targets are scarce and scarcity of resources. In contrast, Brownian motion is usually suit for the case 
when need to locate abundant prey or targets. These traits of two random walks inspired us to improve our 
swarm intelligence optimization, where Lévy flights can improve the ability of “exploration” while 
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Brownian motion benefits the “exploitation”. 
Mathematically, Lévy flights are a kind of random walk whose step lengths meet a heavy-tailed Lévy 

alpha-stable distribution, often in terms of a power-law formula, 1( ) ~| |L s s   ,  where 0<β≤2 is an index. 
A typical version of Lévy distribution can be defined as [11]. 

3/2
1[ ] ,

2 2( ) ( )( , , )
                          0 ;

0, 0.

exp
s s

L s
s

s

 
  

 



   

   
 

                       (35) 

 

(a) Angle values of 500 random turns in Lévy flights 

 

(b) Step lengths of 500 random walks in Lévy flights; 

Figure 2. 2D Lévy flights in 500 steps  

 

As the change of β, this can evolve into one of Lévy distribution, normal distribution and Cauchy 
distribution. Taking the 2-D Lévy flights for instance, the steps following a Lévy distribution as in Fig.4(b), 
while the directions of its movements meet a uniform distribution as in Fig.4(a). Note that the Lévy flights 
are often efficient in exploring unknown and large-scale search space than Brownian walks. One reason 
for this argument is that the variance of Lévy flights 2 3( ) ~ ,1 2t t      increases faster than that of 
Brownian random walks, i.e., 2 ( ) ~t t . Also, compared to Gaussian distribution, Lévy distribution is 
advantageous since the probability of returning to a previously visited site is smaller than for a Gaussian 
distribution, irrespective of the value of μ chosen. 
 

5. Proposed algorithm - CQPSO-DVSA-LFD 

5.1 Particle representation 

For the sake of applying the algorithm to the design optimization problem formulated in the previous 
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section, we need to represent each trail solution as a particle in a multidimensional search space. The real 
coding technique is used to solve the optimal design problem of 2-D IIR filters. According to Eq. (36), the 
dimensionality of the present problem is 15, and each particle has 15 positional coordinates represented by 
the vector  

ܺ ൌ ሺܽଵ, ܽଶ, ܽଵ, ܽଵଵ, ܽଵଶ, ܽଶ, ܽଶଵ, ܽଶଶ, ,ଵݍ ,ଶݍ ,ଵݎ ,ଶݎ ,ଵݏ ,ଶݏ  ሻ் (36)ܪ
 
5.2 Position update strategy 

From the update strategy of CQPSO-DVSA-LFD, we can draw a conclusion that all particles in 
CQPSO-DVSA-LFD will converge to a common point, leaving the diversity of the population extremely 
low and particles stagnated without further search before the iterations is over. To overcome the problem, 
we exert a disturbance generated by Lévy flights on the mean best position, global best position and 
electoral best position when the swarm is evolving as shown in the following Eq.(37)-Eq.(39). To the local 
attractor, the hop steps in Lévy flights promise the random traversal in the search space. However, to the 
global and electoral best location, they only need a slightly disturbance, i.e., the angles meet a uniform 
distribution, to exploit the particles nearby. 

ௗܥ
ᇱ ൌ ௗܥ  ଷߝ ൈ  ௩௬                            (37)݁ݐܵ

ܲௗ
௦௧ᇱ ൌ ܲௗ

௦௧  ଵߝ ൈ  ௩௬                         (38)݈݁݃݊ܣ

ܲௗ
௦௧ᇱ ൌ ܲௗ

௦௧  ଶߝ ൈ  ௩௬                         (39)݈݁݃݊ܣ
where ߝଵ, ߝଶ , ߝଷ is a pre-specified parameter, ܵ݁ݐ௩௬ is a number in a sequence by Lévy flights, angle 

is the angles of directions in Lévy flights. 
 
5.3 Equation of particle motion 

Differently with other similar methods, we use the output parameters of Lévy flights to intervene the 
position change directly, which can be seen in the Eq.(40) as follow, where ݈݁݃݊ܣ௩௬ and ܵ݁ݐ௩௬ are 
the output parameters of Lévy flights which are random generated, while ߝଵ, ߝଶ, ߝଷ are the parametric 
empirical coefficient. 

ܲௗ
௧ାଵ ൌ ߮ ൈ ܲௗ

௦௧  ߰ ൈ ൫ ܲௗ
௦௧  ଵߝ ൈ ௩௬൯݈݁݃݊ܣ  ሺ1 െ ߮ െ ߰ሻ ൈ ሺ ܲௗ

௦௧  ଶߝ ൈ ௩௬ሻ݈݁݃݊ܣ േ ߚ ൈ

หሺܥௗ  ଷߝ ൈ ௩௬ሻ݁ݐܵ െ ܲௗ
௧ ห ൈ ln	ሺ1/ݑሻ	                                                 (40) 

 
5.4 Steps of proposed approach 

The CQPSO-DVSA-LF algorithm is a method combing the DVSA with the Lévy flights disturbance 
technique. Based on the above introduction, we can now present the proposed CQPSO-DVSA-LF 
algorithm in the following steps in Fig. 3: 

 
Algorithm 1: CQPSO-DVSA-LF 

Initiation; 
Label 1: Generation primitive sub-swarms; 
Foreach sub-swarm-i In sub-swarms Do 

Calculate the fitness value; 
If (run==first-time) 
Then Update the personal and global optimal position as in QPSO; 
Else Update the personal and global optimal position with; 
Calculate the best particles; 
Check the condition of DVSA, if not satisfied, and then go to the second step. 
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Calculate the reduced search area. 
End Foreach 

Calculate the fitness value; 
Foreach dimension-i In D Do 

Update the personal and global optimal position; 
Update the particles based on quantum behavior with the Lévy disturbance; 

End Foreach 

Calculate the electoral best position; 
Test whether satisfy the condition of termination; 
If (Meet terminal condition) Then ends 
Else repeat from Label 1; 
End If 

End. 
Figure 3. Pseudocode of CQPSO-DVSA-LF 

 
6. Experimental results 

We run the relevant algorithms on the optimal design of a circular symmetric zero-phase low pass filter 
according to the literature [4]. All the algorithms have been developed from scratch in MATLAB 2014a 
platform on an Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.3 GHz and 8GB memory in Windows 7 64bit 
environment.  

 
6.1 Preliminary test on function optimization benchmark 

To study the search behavior and its performance of CQPSO-DVSA-LF with other versions of PSO, 
such as plain PSO, CPSO, and CQPSO, some typical benchmark functions of continuous optimization are 
selected as the examples [12,13]. 

Rastrigin’s function is frequently used as a test function to test the performance of optimization 
algorithms. Based on Sphere function, it uses cosine function to generate lots of local optimal points. It is 
a complex multimodal function, and optimization falls into the local optimum easily. Griewank function is 
a spin, inseparable variable-dimension multimode function as shown in Fig.4(a). In Fig.4(a), the black 
cycles denote the distribution of particles of 2-D Griewank function in QPSO under DVSA and LF, while 
the red ones express that of CQPSO-DVSA-LF with only two cooperative sub-swarms. It can be clearly 
seen that in CQPSO-DVSA-LF, the search area in each generation of iteration is reduced dynamically into 
the potential rectangles along two red lines on horizontal/vertical directions. In addition, we can also find 
that the populations of the latter generations has been reduced obviously, which means the lower 
computational complexity meanwhile. From Fig.4(b), the results of experiments indicated the proposed 
CQPSO-DVSA-LF can lead to more efficiency and stability than PSO, QPSO, CPSO and CQPSO. 

 
6.2 Results of 2-D IIR digital filter example 

Take the 2-D IIR digital filter referred in papers [2-4] into account, the desired amplitude response 
characteristic could be formulized as following and Fig. x shows the desired amplitude response |Md(x1, 
x2)|. Figs. x-x display the frequency responses of the IIR filters designed using NN, PSO, QPSO, 
CQPSO-DVSA-LF and other competing algorithms. From them, we can see that the ripples in the 
blockage parts of QPSO and QPSO are smaller than those in other algorithms. The QPSO algorithm is the 
second contestant herein. 
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(a). Landscape of Griewank function     (b). Evolution curves of Griewank function 

Figure 4. Experimental results on Griewank function 

 

(a). Desired 2-D IIR filter                           (b). 2-D IIR filter by NN 

 

(c). 2-D IIR filter by GA                            (d). 2-D IIR filter by PSO 

 

(e). 2-D IIR filter by QSPO                     (f). 2-D IIR filter by CQPSO-DVSA-LF 

Figure 5. Amplitude responses of desired 2-D filter and those by the optimization methods.  
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Figure 6. 1-D prototype IIR filter frequency responses 

 

 

Figure 7. Designed 2-D IIR elliptic filters 

 
Moreover, this method could also be used in some direct design methods. Among the existing methods, 

the McClellan transformation is a successful one with simplicity and directness. The transformation could 
obtain a 2-D IIR filter with arbitrary shape by mapping the corresponding 1-D prototype IIR filter 
frequency samples into 2-D contours. As the coefficients of McClellan transformation are dominated by 
minimizing the integral squared error along the desired contour, the design problem could also be modeled 
as a nonlinear optimization problem with constraint conditions. Because of the length of the limit, the 
concrete formalization could be found in literature [14-15]. In this paper, the proposed method is applied 
to the design of the 2-D elliptic IIR filter. Considering the 1-D prototype IIR filter frequency responses 
shown in Fig. 6, the designed 2-D IIR elliptic filters could be obtained as illustrated in Fig. 7. 

 
2. Conclusions 

In this paper, we proposed a CQPSO-DVSA-LF algorithm to help design the two-dimensional 
recursive IIR filters with two ways to reduce the search space. One is called Dynamic Varying Search Area 
(DVSA), which takes charge of limiting the ranges of particles’ activity; the other is cooperative strategy, 
which divides the candidate solution vector into small sub-swarms. Moreover, to help escape from local 
optima, a disturbance generated by Lévy flights is embedded as a hybrid strategy. From the numerical 
results, we can see that the ripple in the blockage parts of CQPSO-DVSA-LF is smaller than those in other 
PSO-like algorithms, and the QPSO algorithm is the second contestant herein. Moreover, the algorithm is 
also effective in the design of the 2-D elliptic IIR filter with the McClellan transformation method in our 
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study. Further work will focus on the control of stability about the designed IIR filters. 
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