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Abstract 

In this paper, we propose two low-complexity block-diagonalization (BD) processing algorithms for 
multiple-input multiple-output (MIMO) relay broadcasting systems with no channel state information (CSI) 
at base station. Firstly, a channel inversion and QR decomposition based low-complexity algorithm is 
introduced to reduce the complexity of the traditional processing algorithm. Then the power loading 
scheme for the proposed algorithm is analyzed and the closed-form solution is derived. Furthermore, an 
enhanced algorithm is proposed by employing the minimum-mean-squared-error (MMSE) criterion. 
Simulation results show that the proposed algorithms reduce the computational complexity significantly. 
The enhanced algorithm and the power loading scheme improves the sum-rate performance efficiently. 
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1. Introduction 

One major challenge faced by the future cellular wireless communication systems is to provide high 
data rates for remote users located in the cell boundaries, which experience very low received 
signal-to-noise ratios (SNRs). An increasingly attractive and cost effective solution is the use of relay 
stations (RSs). Relays can be classified as full-duplex and half-duplex. Full-duplex relay is still under 
investigation due to its highly complex hardware implementation. For practical systems, half-duplex relay 
is more commonly used but suffers significant spectral efficiency loss as a result of the two or more 
transmission phases needed to deliver a message. Multiple-input multiple-output (MIMO) technique is 
well known to provide significant improvement of the spectral efficiency and link reliability because of its 
multiplexing and diversity gains. So combining relay and MIMO techniques can utilize both of their 
advantages to increase the data rates of remote users.  

From a general information theoretic perspective, the capacity bounds of MIMO relay channel with a 
single user have been analyzed in [1]. For practical implementation, the authors in [2] have investigated 
the optimal processing matrix at the relay in an amplify-and-forward (AF) relay MIMO system, also with 
a single user. When multiple antennas are deployed at base station (BS) and RS, multiple users can be 
scheduled at the same time for broadcasting. However, the processing problem becomes more complex 
because of the multi-user interference (MUI). For MIMO relay broadcasting systems (MRBS) where each 
user is equipped with a single antenna, an implementable system architecture was presented in [3] by 
exploiting the dirty-paper coding (DPC) technique, while the authors in [4] proposed an iterative algorithm 
for jointly optimizing the precoding matrix at BS and RS to maximize the system capacity. Recently, there 
has been increasing attention to the MRBS served multiple users equipped with multiple antennas. The 
studies in [5] proposed a linear processing scheme and the performance with limited feedback channel 
state information (CSI) was analyzed. To maximize the sum-rate, an iterative algorithm utilizing the 
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uplink-downlink duality was developed in [6]. All the above research assumed that BS knows the CSI, 
which is needed to perform the processing. However, to inform BS of the CSI between RS and users 
would be rather challenging, especially for high-velocity users. The scenario that only RS has the CSI was 
considered in [7] and a block-diagonalization (BD) based processing algorithm is employed at RS, which 
is still too complex to implement in practice. 

In this paper, we first extend the work in [7] and propose a low-complexity BD processing algorithm 
based on channel inversion and QR decomposition (QRD). Then the power loading scheme for the 
proposed algorithm is analyzed and the closed-form solution is derived. Furthermore, by employing the 
minimum-mean-squared-error (MMSE) criterion, an enhanced algorithm is introduced to improve the 
sum-rate.  

This paper is organized as follows. The system model is given in Section 2. In Section 3, a brief review 
of the traditional BD based algorithm is presented. The low-complexity processing algorithms and the 
corresponding power loading scheme are developed in Section 4. Simulation results and conclusions are 
displayed in Section 5 and Section 6, respectively.  

The following notations are used throughout the paper. Boldface capitals and lowercases denote 
matrices and vectors. 1, , andT H  X X X X  denote the transpose, conjugate transpose, inverse and 
pseudo-inverse of X, respectively. I represents the identity matrix. 

 
2. System Model 

We consider a MRBS as shown in Figure 1. In this system, the BS with NT antennas broadcasts 
independent data streams to K remote users simultaneously and an RS with NS antennas helps the 
communication. AF relay is considered due to its simplicity and practicality. The kth user is equipped with 
Nk antennas and the total number of receive antennas is 

1

K

R kk
N N


  . In this paper, we assume 

T RN N  for simplicity. For the case T RN N , an antenna selection algorithm is needed and the 
multi-user diversity gain can be exploited. The system configuration can be described as 

 1, ,T S KN N N N  . We ignore the direct link between BS and each user due to very severe large-scale 
path loss. 
 

 

Figure 1. System model of the MRBS 
 

The data transmitted from BS to the kth user is assumed to be an Nk-dimensional symbol vector xk, 
which is normalized as [ ]H

k kE  Ix x . Therefore, the total transmitted data vector at BS can be expressed 
as 1[ , ..., ]T T T

Kx x x . The received data vector at RS is given by 

T
r S

T

P

N
 y Hx n                                 (1) 

where TP  is the transmit power at BS and S TN NH  is the backward channel matrix. nS is the 
RS’s complex Gaussian noise vector with independent and identically distributed (i.i.d.) elements of zero 
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mean and variance 2
S . 

After a linear processing, the transmitted data vector at RS is expressed as 

T
r r S

T

P

N
  x Wy WHx Wn                                  (2) 

where S SN NW  is the linear processing matrix at RS. The transmit power constraint at RS can be 
written as 

2( )H H HT
S S

T

P
tr P

N
 WHH W WW                              (3) 

Finally, the received data vector at the kth user is represented as  

T
k k r R k k S R

T

P

N
  x G x + n = G WHx G Wn n                         (4) 

where k SN N
k

G  is the forward channel matrix from RS to the kth user and nR is the user’s complex 
Gaussian noise vector with i.i.d. elements of zero mean and variance 2

R . (4) can be rewritten as 

1,

K
T T

k k k k k j j k S R
j j kT T

P P

N N  

   x G WH x G W H x G Wn n                 (5) 

where S kN N
k

H  represents the channel matrix from the specific Nk transmit antennas at BS which are 
dedicated to the kth user, to the NS receive antennas at RS. 

As we can see from (5), the first term of the right hand side indicates the desired data of the kth user 
and the others includes the MUI and noise. To fully eliminate the MUI in (5), W should satisfy  

0, for
0, otherwisek j

j k 


G WH                                 (6) 

or 
0 0

0 ... 0
0 0

1 1

K K

 
   
  

G WH

GWH

G WH

                            (7) 

where T
1[   ...  ]T T

KG = G G  is the combining forward channel matrix. We define W as 

G HW W W                                     (8) 

WG and WH are the linear processing matrices for the forward channel and the backward channel, 
respectively. It is obvious that (7) is satisfied when we set G

+W = G  and H
+W = H . However, this 

scheme simply treats each antenna as a single user thus sacrificing some benefit of the multiple antennas. 
 

3. Review of the BD Based Algorithm 

The authors in [7] proposed a BD based algorithm, where WG and WH are designed to place each user’s 
data stream at the null space of the other users’ channels. 

To this end, the kth user’s forward MUI channel matrix is defined as 

1 1 1[ ... ... ] Gk SN NT T T T T
k k k K


  G G G G G                           (9) 

where Gk R kN N N  . Assuming S RN N , we have rank( )k GkNG  in a rich scattering environment. 
The singular value decomposition (SVD) of kG  is 
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H
,1 ,0[ ]k Gk Gk Gk GkG U V V                               (10) 

where Gk GkN N
Gk

U  is a unitary matrix and the diagonal matrix Gk SN N
Gk

  contains the singular 
values of kG . ,1

GkSN N
Gk

V  consists of the first GkN  non-zero singular vectors and 
Gk( )

,0
S SN N N

Gk
 V  holds the last GkSN N  zero singular vectors. Thus, ,0GkV  forms an orthonormal 

basis for the null space of kG  and WG can be expressed as 

1,0 ,0[ ... ]G G GKW V V                                 (11) 

Similarly, the kth user’s backward MUI channel matrix is defined as 

1 1 1[ ... ... ] HkSN N
k k k K


  H H H H H                  (12) 

where Hk T kN N N  . The SVD of kH  is 

,1 ,0[ ] H
k Hk Hk Hk HkH U U V                            (13) 

where ( )
,0

HkS SN N NH
Hk

 U  forms an orthonormal basis for the null space of kH  and WH can be 
expressed as 

1,0 ,0[ ... ]H
H H HKW U U                              (14) 

After the determination of WG and WH, the MUI at each user is fully eliminated. Since this BD based 
algorithm uses SVD to calculate the linear processing matrix, we term it as the BD-SVD algorithm. 
 

4. Low-Complexity Processing Algorithms 

In this section, we introduce the low-complexity processing algorithms to reduce the complexity and 
improve the performance of the MRBS. 
 
4.1. Low-Complexity Alogorithm 

Although the BD-SVD algorithm can fully eliminate the MUI and benefit from the multi-antenna gain, 
the SVD operations bring along considerable computational complexity which makes it difficult to 
implement in practice. In order to reduce the complexity, we propose a BD based low-complexity 
algorithm (BD-LC) as follows. 

We first define the pseudo-inverse of the forward channel matrix G as 

1
1( ) [ ... ]H H

K
    G G GG G G                            (15) 

By performing QRD on k
G , we get 

k Gk Gk
 G Q R ,  k=1, …, K                            (16) 

where S kN N
Gk

Q  forms an orthonormal basis for the column space of k
G and k kN N

Gk
R is an 

upper triangular matrix[8]. It is observed that j k j Gk Gk
   0G G G Q R , for j k . Since GkR  is 

non-singular, it follows j Gk  0G Q . Therefore, GkQ  forms an orthonormal basis for the null space of 
kG . According to [9], GkQ  is equivalent to the ,0GkV  in the BD-SVD algorithm. Therefore, WG can be 

expressed as 
1[ ... ]G G GKW Q Q                                (17) 

WH can be calculated in a similar way. We define  

1
1( ) [ ... ]H H H

K
    H H H H H H                        (18) 
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By performing QRD operation on k
H , we get 

k Hk Hk
 H Q R , k=1, …, K                            (19) 

where S kN N
Hk

Q  forms an orthonormal basis for the null space of kH  and WH can be expressed as 

1[ ... ]H
H H HKW Q Q       (20) 

4.2. Complexity Analysis 

We use the number of floating point operations (FLOPs) to measure the computational complexity. 
According to [9], the numbers of FLOPs required for different matrix operations are summarized as 
follows: 

 Multiplication of m n  and n p  complex matrices: 8mnp ; 
 SVD of an m n  ( m n ) complex matrix where only   and V  are obtained: 

2 332( 2 )nm m ; 
 Inversion of an m m  real matrix: 316 / 3m ; 
 QRD of an m n  ( m n ) complex matrix: 2 2 316( 1/ 3 )n m nm m  . 
The required numbers of FLOPs for BD-SVD and BD-LC are illustrated in Table 1 and Table 2, 

respectively.  
 

Table 1. Complexity of BD-SVD  

Steps Operations FLOPs 

1 SVD for calculating WG 
2 3

1
32 ( 2 )K

Gk GkSk
N N N


  

2 SVD for calculating WH 
2 3

1
32 ( 2 )K

Hk HkSk
N N N


  

 
Table 2. Complexity of BD-LC  

Steps Operations FLOPs 

1 Inversion of G 3 216 / 3 16R R SN N N  

2 QRD for calculating WG
2 2 3

1
16 ( 1 / 3 )K

S k S k kk
N N N N N


   

3 Inversion of H 3 216 / 3 16T T SN N N  

4 QRD for calculating WH
2 2 3

1
16 ( 1 / 3 )K

S k S k kk
N N N N N


   

 
In order to make the complexity comparison more comprehensive and intuitive, we plot the numbers of 

FLOPs required for the two algorithms in Figure 2 as a function of user number. We assume that each user 
is equipped with 2kN   antennas and T S kN N N K   . 

It can be seen from Figure 2 that the proposed BD-LC algorithm demands much lower computational 
complexity than the BD-SVD algorithm. One reason is that the QRD operation is much simpler than the 
SVD operation in the case of same matrix dimension. A more important reason is that, the SVD operations 
in the BD-SVD algorithm are implemented K times on matrices with dimensions Gk SN N  and 

HkSN N , while the QRD operations in the BD-LC algorithm are implemented K times on matrices with 
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dimensions S kN N  and S kN N , which are much lower than the formers. It is worth noting that with 
the increase of the system dimension, the complexity reduction by the proposed BD-LC algorithm 
becomes more considerable. 
 

 

Figure 2. Complexity comparison, with 2kN   and T S kN N N K    

 
4.3. Power Loading Scheme 

To maximize the sum-rate, we define the power loading matrix P as 

1 0 0
0 ... 0
0 0 

 
   
  

P

P

P

                                 (21) 

where k kN N
k

P  is the power loading matrix for the kth user. With the power loading matrix being 

introduced, (8) can be rewritten as  

G HW W PW                                  (22) 
By substituting (17), (20), (21) and (22) into (5), we get 

   HT
kk kk k k H

T
k k RS

P

N
  y G P H x G P Q n n                        (23) 

where  k k GkG G Q  and  H
k Hk kH Q H  denote the effective forward and backward channel matrix, 

respectively. As we can see, after the processing, the MRBS becomes K parallel single-user MIMO relay 
systems. Motivated by the optimal design for the single-user MIMO relay system[2], we perform SVD 
operations on  kG  and  kH  as    H

GKk GK GKG U V  and     H
k HKHK HKH U V . Then kP  is formulated as 

  H
Gk Hk k kP V U                                 (24) 

where ,1 ,diag( , ..., )
kk k k N    is for allocating the power. By substituting (24) into (23), we get 

      H HT
GK HK GKGK HK GK Hkk k

H

k k Hk S R
T

P

N
  y U V x U Q n nU                (25) 

The sum-rate at the kth user is derived as 
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 



 



2

2

,

,

2 2

2 22 2

, ,

2 2 2
,1

1 log det( )
2

1 log (1 )
2

k

T
HK GK

T
k

GKS R

T
Hk j Gk jjN

T

Gk jj S j

k

k

k R

k

P

N
R

P

N

 

 

 


 
 

 






I





 


                           (26) 

where the factor of 1/2 comes from the loss of the half-duplex transmission.  ,Hk j  and  ,Gk j  are the jth 

elements of the diagonal matrix 
2
HK  and 

2
GK , respectively. 

The transmit power constraint can be written as 

 2 2
,

2 2 2
,

1 1 1
( ) ( )

kNK K
T T

Hk Hk jS j S S
k k jT

k k k
T

P P
tr P

N N
 

  

                      (27) 

Therefore, the maximizing problem of the system sum-rate 
1

K

kk
R R


  is formulated as 



,

1

2
,

1

,

,

0, , ;

( )

maxmize

subject to
k j

kK

k

j

N
T

Hk j S Sj
j T

k

k

R

k j

P
P

N


 















                      (28) 

Problem (28) is a standard convex optimization problem and can be solved with the Lagrange 
multiplier method. The closed-form solution is given as 

   

 

2 , ,2
,

,

2

,
2

,

,

(
ln 2

4( ) 2)

(1 )2

Hk j Gk j
Hk j HR

R

S

k j

Gk j Hk j
k j






  






 
   

  
                   (29) 

where 2/ ( )T T SP N   and ( ) max(0, )x x  .   is a unique root of 

 2
,1 ,1

( / ) 0kK
Hk jj T T S S

N

kjk
P N P

 
     , which can be  solved with a numerical root-finding 

algorithm, such as the Bisection method, etc. 
 
4.4. Enhanced Algorithm 

The pseudo-inverses in (15) and (18) may amplify the noise and therefore some performance loss will 
occur. To overcome this problem, an enhanced algorithm termed the BD based enhanced low-complexity 
algorithm (BD-ELC) is proposed as follows. 

To take the noise term into account, we apply the MMSE criterion and replace the pseudo-inverse in 
(15) and (18) with MMSE channel inversion as [10] 

1( )H H

mmse     IG G GG                              (30) 

1( )H H

mmse    IH H H + H                             (31) 

where 2 /S R SN P   and 2 /T S TN P  . The remaining steps are similar to the BD-LC algorithm, 
which indicates similar computational complexity. 
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Note that the BD-LC algorithm relies on the pseudo-inverse of G and H, thus having a dimension 
constraint, i.e., NS≤NT and NR≤NS. However, this constraint does not exist for the BD-ELC algorithm, 
similar to the MMSE channel inversion. 

Unlike the BD-LC algorithm, the power loading scheme for the BD-ELC algorithm is not easy to 
identify since the residual MUI varies according to the power loading. However, the proposed power 
loading scheme can still be implemented in BD-ELC, and improve the sum-rate performance efficiently as 
will be shown later. 

 

 
Figure 3. Sum-rate as a function of SNR1 with SNR2 fixed at 10dB. 

 
Figure 4. Sum-rate as a function of SNR2 with SNR1 fixed at 10dB. 

 
5. Simulation Results 

In this section, we present simulation results to show the sum-rate performance of the proposed 
algorithms. A system under the configuration of  6 6 2,2,2   is considered. All channels are assumed 
to be quasi-static flat faded and the elements are complex Gaussian variables with zero mean and unit 
variance. The average received SNRs per antenna at RS and at users is denoted as SNR1 and SNR2, 
respectively. PL in the legend denotes the implementation of the proposed power loading scheme. 

Figure 3 shows the sum-rate performance of different algorithms as a function of SNR1 with SNR2 
fixed at 10dB, and vice versa in Figure 4. It can be seen that the proposed BD-LC algorithm represents 
identical performance as the traditional BD-SVD algorithm, while offering much lower computational 
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complexity as analyzed in section IV. The proposed power loading scheme improves the sum-rate 
performance efficiently, at a cost of additional computational complexity. However, even without the 
power loading scheme, the BD-ELC algorithm shows significant sum-rate enhancement for balancing the 
MUI and the noise. The proposed power loading scheme can improve the sum-rate performance of the 
BD-ELC algorithm as well. 
 
6. Conclusion 

In this paper, two generalized BD algorithms for the MRBS are proposed. We first extend the 
traditional BD based algorithm to a low-complexity BD-LC algorithm, which reduces the computational 
complexity significantly. Then a power loading scheme for the proposed algorithm is developed to 
improve the sum-rate performance. By employing the MMSE criterion, an enhanced algorithm is proposed 
to further improve the performance. Simulation results show that the proposed BD-ELC algorithm is 
superior to the other algorithms and the power loading scheme improves the sum-rate performance 
efficiently. 
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